A SHORT PROOF OF THE λg-CONJECTURE WITHOUT GROMOV-WITTEN THEORY: HURWITZ THEORY AND THE MODULI OF CURVES
نویسندگان
چکیده
We give a short and direct proof of the λg-Conjecture. The approach is through the Ekedahl-Lando-Shapiro-Vainshtein theorem, which establishes the “polynomiality” of Hurwitz numbers, from which we pick off the lowest degree terms. The proof is independent of GromovWitten theory. We briefly describe the philosophy behind our general approach to intersection numbers and how it may be extended to other intersection number conjectures.
منابع مشابه
Hurwitz Theory and the Double Ramification Cycle
This survey grew out of notes accompanying a cycle of lectures at the workshop Modern Trends in Gromov-Witten Theory, in Hannover. The lectures are devoted to interactions between Hurwitz theory and Gromov-Witten theory, with a particular eye to the contributions made to the understanding of the Double Ramification Cycle, a cycle in the moduli space of curves that compactifies the double Hurwit...
متن کاملMirror Symmetry for Stable Quotients Invariants
The moduli space of stable quotients introduced by Marian-Oprea-Pandharipande provides a natural compactification of the space of morphisms from nonsingular curves to a nonsingular projective variety and carries a natural virtual class. We show that the analogue of Givental’s J-function for the resulting twisted projective invariants is described by the same mirror hypergeometric series as the ...
متن کاملThe Gromov-witten Potential of a Point, Hurwitz Numbers, and Hodge Integrals
Hurwitz numbers, which count certain covers of the projective line (or, equivalently, factorizations of permutations into transpositions), have been extensively studied for over a century. The Gromov-Witten potential F of a point, the generating series for Hodge integrals on the moduli space of curves, has been a central object of study in Gromov-Witten theory. We define a slightly enriched Gro...
متن کاملTopological String Theory and Enumerative Geometry
In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of stu...
متن کاملThe Moduli Space of Curves and Gromov-witten Theory
The goal of this article is to motivate and describe how Gromov-Witten theory can and has provided tools to understand the moduli space of curves. For example, ideas and methods from Gromov-Witten theory have led to both conjectures and theorems showing that the tautological part of the cohomology ring has a remarkable and profound structure. As an illustration, we describe a new approach to Fa...
متن کامل